PhD Position Interaction-Aware Motion Planning

Updated: almost 2 years ago
Deadline: 16 Jun 2022

Mobile robots are not yet capable of seamless interaction in human populated environments, primarily due to the high complexity of modeling and reasoning over the effect that robot actions have on other robots and humans, and the inherent uncertainty. Humans rely on intuition, namely the ability to understand interaction instinctively, without the need for conscious reasoning. The goal of this project is to provide mobile robots with the ability to reason about their coordination with other agents and the associated risks, take appropriate actions and continuously reassess.

In this project we will take a holistic view on the interaction of mobile robots and humans, where we will consider multiple spatio-temporal granularities ranging from individual interactions to the interaction of a robot fleet with the humans in a city, and from short term (local) to long term (global) effects of the interaction. You will employ reinforcement learning tools to build local and global intuition models of the interaction between robots and their environment. Then, you will integrate these intuition models in uncertainty-aware trajectory optimization methods to compute safe interaction-aware trajectories for mobile robots. Within the project, you will be responsible for motion planning and collaborate with other researchers responsible for task assignment and perception.

Thus, you will make a fundamental contribution towards intuitive multi-robot interaction, making it possible for teams of mobile robots to safely interact in human-centric environments and enabling a new level of automation in factories and cities.

You will work on the ERC Starting Grant project "Intuitive Interaction for Humans among Robots (INTERACT)" and be embedded within the Autonomous Multi-Robots Lab in the Department of Cognitive Robotics at TU Delft.

The goal of the Autonomous Multi-Robots Laboratory at the Delft University of Technology is to develop novel methods for navigation, motion planning, learning and control of autonomous mobile robots, with a special emphasis on multi-robot systems, on-demand transportation and robots that interact with other robots and humans in dynamic and uncertain environments. Building towards the smart cities of the future, our applications include self-driving vehicles, mobile manipulators, micro-aerial vehicles, last-mile logistics and ride-sharing. See: https://www.autonomousrobots.nl/

The main focus of the Cognitive Robotics department is the development of intelligent robots and vehicles that will advance mobility, productivity and quality of life. Our mission is to bring robotic solutions to human-inhabited environments, focusing on research in the areas of machine perception, motion planning and control, machine learning, automatic control and physical interaction of intelligent machines with humans. We combine fundamental research with work on physical demonstrators in areas such as self-driving vehicles, collaborative industrial robots, mobile manipulators and haptic interfaces. Strong collaborations exist with cross-faculty institutes TU Delft Robotics Institute and TU Delft Transport Institute), our national robotic ecosystem (RoboValley, Holland Robotics) and international industry and academia. http://www.cor.tudelft.nl/



Similar Positions