PhD position in Machine learning for turbulence modelling in wind farms

Updated: over 2 years ago
Deadline: 16 Oct 2021

Afdeling

AIFluids is a Delft Artificial Intelligence Lab. Data, Digitalisation and Artificial Intelligence are becoming increasingly important when dealing with major scientific and societal challenges. DAI labs are co-run by experts in ‘the fundamentals of AI technology’ and experts in ‘AI applications’. As a PhD student, you will work with at least two members of the academic staff and three other PhD candidates. In total, TU Delft will establish 24 DAI Labs, where 48 Tenure Trackers and 96 PhD candidates will have the opportunity to push the boundaries of science using AI. You will be a member of the thriving DAI Lab community that fosters cross-fertilization between talents with different expertise and disciplines.

Each team will be driven by research questions which arise from scientific and societal challenges, and contribute to the development and execution of domain-specific education. You will receive a 5-year contract, one year longer than that of a standard PhD. The extra year accounts for an increased educational load in addition to your normal research tasks, and is to be used for introducing new AI, Data and Digitalisation education related activities within our BSc and MSc programs. All team members have many opportunities for self-development.

You will work in the deaprtment of Aerodynamics, Wind Energy, Flight Performance and Propulsion (AWEP) of the Faculty of Aerospace Engineering (AE).

The Aerodynamics, Wind Energy, Flight Performance & Propulsion (AWEP) Department contributes to the future of aircraft and wind turbines, with a nucleus in Aerodynamics. The future sustainability of air transport depends greatly on innovations. We need to reduce significantly our energy consumption, our emissions and our dependence on fossil fuels. A good proportion of the innovations we need, are in the fields of aerodynamics, flight performance and propulsion. The relationship between aircraft and wind turbines is reflected in, for example, the fact that aircraft propulsion systems and wind turbines are both rotating wing systems with inverted operations. The turbine design directs towards huge, robust machines for application offshore and in energy-generating kites.



Similar Positions