PhD in Applied Mathematics: Implicit solvers with time-step coresolution and warm start for evolution problems in geosciences

Updated: about 1 month ago
Location: Rennes, BRETAGNE
Job Type: FullTime
Deadline: 31 Aug 2024

21 Mar 2024
Job Information
Organisation/Company

INSA Rennes
Research Field

Mathematics » Computational mathematics
Researcher Profile

First Stage Researcher (R1)
Country

France
Application Deadline

31 Aug 2024 - 23:59 (Europe/Paris)
Type of Contract

Temporary
Job Status

Full-time
Hours Per Week

35
Offer Starting Date

4 Nov 2024
Is the job funded through the EU Research Framework Programme?

Not funded by an EU programme
Is the Job related to staff position within a Research Infrastructure?

No

Offer Description

The numerical discretization of physical models representing evolutionary problems in many fields leads to nonlinear algebraic systems of very large dimensions. The process of solving these systems, which must be carried out robustly and rapidly at each time-step in order to increase software efficiency, comes up against a number of obstacles. In this thesis, we propose to examine two of the most notable ones, for which we have possible solutions.

The first obstacle involves the time-step size. In an implicit scheme, a large time-step makes it possible to go faster, at the cost of making the system stiffer and therefore more difficult for the solver to converge. On the other hand, a small time-step makes it easier to solve the system, at the expense of a greater number of time-steps required, and therefore the overall cost. At present, there is no ideal strategy for managing time-steps. For some ODEs, where error estimates can be devised, there are proven adaptivity techniques. For PDEs, however, we must content ourselves with various heuristics to adjust the time-step during simulation. In recent years, a new approach has emerged, inspired by continuation methods, whereby the time-step becomes an unknown in its own right. All the unknowns are updated simultaneously by an iterative method, hence the term co-solution. The advantage is that any intermediate iterate can be recovered as a backup solution in the event of non-convergence. The disadvantage, however, lies in the additional equation to be correctly prescribed. This is where we seek to go further than the current state of the art by considering the optimality conditions of an optimization problem.

The second obstacle relates to the initial point for the solver. Although the value of the unknowns at the previous time-step is a natural choice, there are instances where this is not advisable. Indeed, when certain equations are complementarity relations and the system is solved by an interior point method, it is essential to start from a strictly interior point. Then, the choice of the previous state, which lies on the boundary of the admissible domain, turns out to be detrimental. To remedy this, we recommend transposing the warm-start ideas of linear programming to the non-linear framework, as well as to that of time-step co-resolution. The success of this endeavor would enable us to deploy interior point methods on a realistic scale.

Keywords: nonlinear systems, Newton’s method, continuation method, coresolution, linear programming, constrained optimization

Academic supervisor: Mounir HADDOU (INSA Rennes)

Other supervisors: Quang Huy TRAN (IFPEN) and Ibtihel BEN GHARBIA

Doctoral School: ED MATISSE 601 (Université de Rennes)

 


Requirements
Research Field
Mathematics » Computational mathematics
Education Level
Master Degree or equivalent

Skills/Qualifications

Master’s degree in Numerical Analysis or Scientific Computing


Specific Requirements

Programming languages: C++, Python...


Languages
ENGLISH
Level
Excellent

Additional Information
Work Location(s)
Number of offers available
1
Company/Institute
INSA Rennes
Country
France
City
Rennes
Postal Code
35700
Street
20 avenue des Buttes de Coesmes
Geofield


Number of offers available
1
Company/Institute
IFP Energies nouvelles
Country
France
City
Rueil-Malmaison
Postal Code
92852
Street
1 et 4 avenue de Bois-Préau
Geofield


Where to apply
E-mail

[email protected]

Contact
City

Rennes
Website

https://www.insa-rennes.fr
Street

20 avenue des Buttes de Coesmes
Postal Code

35700

STATUS: EXPIRED