Doctoral candidates in Quantum Nanomechanics

Updated: over 2 years ago
Job Type: FullTime
Deadline: 31 Jan 2022

The Quantum Nanomechanics group https://www.aalto.fi/en/department-of-applied-physics/quantum-nanomechanics at the Department of Applied Physics is looking for an outstanding

Doctoral candidate

to carry out experimental research on quantum micromechanical systems. In our team, we investigate how mechanical oscillators can be utilized for fundamental research probing quantum mechanics in massive systems, or for usage in quantum information processing. Additionally, our new efforts aim at experimental studies of gravity in the quantum regime. In our recent research, we have demonstrated quantum entanglement between two micromechanical oscillators realized as vibrating aluminum drumheads [Nature 556, 478 (2018) , Science 372, 625 (2021) ]. The next challenges include measurement-based feedback, which can be used for preparing and steering mechanical quantum states. Strong measurements and feedback operations allow for novel ways of creating nonclassical mechanical states, for example squeezed and entangled states. A grand goal is to realize quantum teleportation of the state between two oscillators.

In another project, the goal is to touch a hundred-year-old mystery of physics: Despite its success at describing phenomena in the low-energy limit, quantum mechanics is incompatible with general relativity that describes gravity and huge energies. The interface between these two has remained experimentally elusive, because only the most violent events in the universe have been considered to produce measurable effects due to the plausible quantum behavior of gravity. We aim at detecting gravitational forces for the first time within a quantum system. We use mechanical oscillators loaded by milligram masses, and bring two such gravitationally interacting oscillators into nonclassical motional states. Initially, we measure the gravitational force between gold particles weighing a milligram, representing a new mass scale showing gravitational forces within a system.

The experimental work in these projects involves design of the samples and of the measurement setups, cleanroom fabrication, running microwave measurements in dilution refrigerators, and data analysis.

Your role and goals

Depending on your background and interests, you may work either on

1. Quantum feedback operations on aluminum drum oscillators. We realize “microwave optomechanical” devices, where the drum oscillators interact with on-chip microwave cavity resonators. Optomechanical techniques allow for both preparing, measuring and manipulation of the mechanical quantum states. You will accommodate these devices into a quantum-limited detection system comprising of parametric amplifiers and real-time feedback realized with FPGA control.

2. The development and measurement of “quantum gravitational” devices, where the core element is an oscillating silicon nitride membrane that is loaded by a small mass. At very low temperatures achievable in dilution refrigerators, the oscillator becomes nearly isolated from energy losses to the environment, and it can further be made quantum with microwave optomechanics. Together with other team members, you will design and fabricate the devices, and accommodate them in a cryogenic positioning system to verify the gravitational forces inside the system.

At the beginning, the candidate will fully work together with other group members. Over time, the candidate is expected to gain responsibility of part of the project.

Your experience and ambitions

For this challenging research, we are looking for brilliant and energetic individuals who are motivated in experimental, low-temperature quantum physics. We require MSc degree with excellent study records in physics or electrical engineering. Additionally, the candidates should be excellent team players. Experience with hands-on research, or skill in theoretical understanding of the studied phenomena, are considered significant assets.

What we offer

The Quantum Nanomechanics team, ambitious but relaxed with a great team spirit, carries out top -notch experimental research on the foundations of quantum mechanics. With superconducting qubits, we explore processing of quantum information with mechanical motion. In our more applied research, we lay the foundation for a new generation of devices that use various types of microwave-optomechanical effects for efficient signal processing. We have realized quantum-limited microwave amplifiers and nonreciprocal components to be used in superconducting quantum technology. Besides electromechanics, we are investigating hybrid devices where we control ferromagnetic magnons using acoustic waves.

The position is initially filled for 2 years, and following a successful midterm progress review, the contract is continued for another 2 years after which the PhD dissertation is expected to be completed. Aalto University follows the salary system of Finnish universities. The starting salary is approx. 2560€/month, and it will increase with responsibilities and performance over time. The contract includes occupational healthcare.

The workplace will be the Otaniemi Campus of Aalto University, in the premises of the OtaNano national research infrastructure for micro- and nanotechnologies. OtaNano provides access to all the advanced nanofabrication, nanomicroscopy and measurement facilities and techniques. VTT Technical Research Centre of Finland on campus leverages the bridge between research and innovation. Several startup companies working with electronics, cryogenics, and quantum technology have recently emerged in the community. Our team belongs to the national Centre of Excellence – Quantum Technology Finland that is harnessing quantum phenomena for solid-state-based quantum devices and applications. We also belong to the European Microkelvin Platform collaboration.

Ready to apply?

To apply for the position, please submit your application including the attachments mentioned below as one single PDF document in English through our online recruitment system by using the "Apply" link on Aalto University’s web page.

(1)   Letter of motivation
(2)   CV including list of publications
(3)   Degree certificates and academic transcripts
(4)   Contact details of at least two referees

The deadline for applications is January 31, 2022. The positions will be filled as soon as suitable candidates are identified. For additional information, kindly contact Prof. Mika Sillanpää, [email protected] . Aalto University reserves the right for justified reasons to leave the position open, to extend the application period, reopen the application process, and to consider candidates who have not submitted applications during the application period.

Please note: Aalto University’s employees and visitors should apply for the position via our internal system Workday -> find jobs (not external aalto.fi webpage on open positions) by using their existing Workday user account.

About Finland

Finland is a great place for living with or without family – it is a safe, politically stable and well-organized Nordic society. Finland is consistently ranked high in quality of life and was just listed again as the happiest country in the world: https://worldhappiness.report/news/its-a-three-peat-finland-keeps-top-spot-as-happiest-country-in-world/ . For more information about living in Finland: https://www.aalto.fi/services/about-finlan

More about Aalto University:

Aalto.fi
twitter.com/aaltouniversity
facebook.com/aaltouniversity
instagram.com/aaltouniversity



Similar Positions