Postdoctoral positions in structural biology/cell biology

Updated: about 2 months ago
Location: Bethesda, MARYLAND
Deadline: 27 Jan 2023

Postdoctoral positions in X-ray crystallography/cryo-EM and cell biology to study centrosome-associated cancers

Position Description: A postdoctoral fellowship is available to study the molecular basis of how the centrosome is organized in a 3D space and how HIV and other virus-encoded proteins hijack the centrosome duplication machinery and induce aneuploidy and cancer development. The primary focus will be on determining the structures of multiple complexes that we have identified from our recent unpublished studies. The ultimate goal of this research is to investigate the etiology of centrosome abnormality-associated cancers or other human disorders and to design novel strategies to tackle them. Related to this project, we are also taking biochemical and cell biological approaches, including super-resolution imaging, single molecule tracking, and in vitro reconstitution, to delineate the mechanisms governing Polo-like kinase 4 and 1 (Plk4/Plk1) functionality on the centrosomal architecture, the deregulation of which can lead to the development of various human diseases, including cancers.  For additional information. please visit .

Fellows who have an expertise in the field of X-ray crystallography/cryo-EM or cell biology with a keen interest in learning about the organization of the centrosome and their abnormalities in human disorders are encouraged to apply. Applicants should have a Ph.D. (or expected to receive a Ph.D.) or M.D. equivalent at the time of joining the lab and have achieved the degree less than 3 years ago. 

To apply, please send CV and three names of references to Dr. Kyung Lee ( ). Starts at $62,900 for fellows with 0 yr postdoc training (+ annual raise) and full health insurance

Employer Name: National Cancer Institute (NCI), National Institutes of Health (NIH)

Position Location: 9000 Rockville Pike, Bethesda, MD 20892, U. S. A.

Recent papers:

  • Kim, T.-S., et al., 2019. Molecular architecture of a cylindrical self-assembly at human centrosomes. Nat. Comm. 10: 1151. Featured article (Editors Highlights).
  • Park, J.-E., et al., 2019. Phase separation of polo-like kinase 4 by autoactivation and clustering drives centriole biogenesis. Nat. Comm. 10: 4959.
  • Wei, Z., et al., 2020. Requirement of the Cep57-Cep63 interaction for proper Cep152 recruitment and centriole duplication. Mol. Cell. Biol. 40:e00535. Featured article (Cover art)
  • Lee, K. S., et al., 2020. A self-assembled cylindrical platform for Plk4-induced centriole biogenesis. Open Biol. 10:200102 (Review). Featured article (Cover art)
  • Disclaimer: This position is subject to a background investigation. The NIH is dedicated to building a diverse community in its training and employment programs.

    View or Apply

    Similar Positions