5G Advanced Microwave Materials for Millimeter-wave Devices

Updated: about 18 hours ago
Location: Boulder, COLORADO
Deadline: The position may have been removed or expired!

RAP opportunity at National Institute of Standards and Technology     NIST

5G Advanced Microwave Materials for Millimeter-wave Devices


Location

Communications Technology Laboratory, Radio Frequency Technology Division


opportunity location
50.67.22.B8282 Boulder, CO

NIST only participates in the February and August reviews.


Advisers
name email phone
Nathan Daniel Orloff [email protected] 303.497.4938
Description

Demand for mobile data, the implementation of new wireless devices, and an explosion of mobile users has stressed our telecommunications infrastructure to its limits. Naturally, engineers have pushed existing devices and networks to ever-increasing frequencies in an effort to address this multifaceted problem by improving data rates and adding spectrum. With the march to higher frequencies, there is a growing clamor that conventional materials and characterization techniques are not up to the challenge. For example, commercial tunable dielectrics used in band-pass filters and tunable antennas are too electrically lossy for frequencies above 10 GHz. Hence, a successful Associate will address a three-part challenge: (1) to further our understanding of the underlying physics that governs electromagnetic properties of materials, (2) to establish a metrology approach for characterizing materials and components at frequencies beyond current techniques, and (3) to develop a high-throughput technique to screen new materials for high frequency performance. As a first step, the Associate will focus on ferroelectric materials and transition metal dichalcogenides. These materials systems may have far-reaching applications, extending from neuromorphic computing to compact multiple-input multiple-output antennas. By achieving the aims of this project, this Associate will accelerate material discovery and design for applications in advanced telecommunications and electronics.

Reference:

Lee CH, Orloff ND, et al: Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics, Nature 502: 7472, 2013


key words

Optics; Telecommunications; mm-wave; Terahertz; Ferroelectrics; Materials; Microwave; Physics; Microelectronics;


Eligibility

Citizenship:  Open to U.S. citizens

Level:  Open to Postdoctoral applicants


Stipend
Base Stipend Travel Allotment Supplementation
$82,764.00 $3,000.00

Similar Positions